Best subspace tensor approximations

نویسندگان

  • S. Friedland
  • V. Mehrmann
چکیده

In many applications such as data compression, imaging or genomic data analysis, it is important to approximate a given tensor by a tensor that is sparsely representable. For matrices, i.e. 2-tensors, such a representation can be obtained via the singular value decomposition which allows to compute the best rank k approximations. For t-tensors with t > 2 many generalizations of the singular value decomposition have been proposed to obtain low tensor rank decompositions. In this paper we will present a different approach which is based on best subspace approximations, which present an alternative generalization of the singular value decomposition to tensors. 2000 Mathematics Subject Classification. 15A18, 15A69, 65D15, 65H10, 65K05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity of Tensor Product Approximations to Square Integrable Functions

We investigate first-order conditions for canonical and optimal subspace (Tucker format) tensor product approximations to square integrable functions. They reveal that the best approximation and all of its factors have the same smoothness as the approximated function itself. This is not obvious, since the approximation is performed in L2.

متن کامل

Krylov Subspace Methods for Tensor Computations

A couple of generalizations of matrix Krylov subspace methods to tensors are presented. It is shown that a particular variant can be interpreted as a Krylov factorization of the tensor. A generalization to tensors of the Krylov-Schur method for computing matrix eigenvalues is proposed. The methods are intended for the computation of lowrank approximations of large and sparse tensors. A few nume...

متن کامل

Geometric Structures in Tensor Representations

In this paper we introduce a tensor subspace based format for the representation of a tensor in a topological tensor space. To do this we use a property of minimal subspaces which allow us to describe the tensor representation by means of a rooted tree. By using the tree structure and the dimensions of the associated minimal subspaces, we introduce the set of tensors in a tree based format with...

متن کامل

Fusion Tensor Subspace Transformation Framework

Tensor subspace transformation, a commonly used subspace transformation technique, has gained more and more popularity over the past few years because many objects in the real world can be naturally represented as multidimensional arrays, i.e. tensors. For example, a RGB facial image can be represented as a three-dimensional array (or 3rd-order tensor). The first two dimensionalities (or modes)...

متن کامل

Krylov-type methods for tensor computations I

Several Krylov-type procedures are introduced that generalize matrix Krylov methods for tensor computations. They are denoted minimal Krylov recursion, maximal Krylov recursion, and contracted tensor product Krylov recursion. It is proved that, for a given tensor A with multilinear rank-(p, q, r), the minimal Krylov recursion extracts the correct subspaces associated to the tensor in p+ q+r num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008